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Abstract

The paper presents a coherent theory of the uniform bending problem in a circular curved beam, with multi-connected
cross-section, having a large radius of curvature with respect to its width. The three-dimensional elastic problem is
solved, in the case of linear homogeneous isotropic body, assuming the stress tensor as the unknown and by exactly
satisfying the field compatibility equations.

The mathematical structure of the governing boundary value problem (BVP), enlightened here for the first time, is
unexpectedly complicated: a fourth-order elliptic (variable coefficients) partial differential equation with two degenerate
unstable boundary conditions (i.e. involving second and third order partial derivatives in a direction that becomes
tangent at several points of the boundary).

Such a kind of BVP seems to be typical of the curved beam bending problem since it also appears in the displacement
approach (Mentrasti, 2001. part II, Int. J. Solids Struct. 38, 5727-5745).

As a final point, it is reduced to a simpler problem by an ad hoc integral representation, assuming the p-convexity of
the cross-section domain. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Curved beam; Uniform bending; Multi-connected cross-section; Compatibility equations; Degenerate boundary conditions;
Exact 3D elastic solution

1. Introduction

Curved beams, with large radius of curvature with respect to the width, subjected to bending moments,
have been studied widely in the past under very restrictive hypotheses regarding the geometry of the cross-
section, the displacement field or the state of stress: among the others, the formulations by Golovin (1880—
1881) quoted by Timoshenko (1953), Fubini (1937), Southwell (1942), and Freiberger and Smith (1949) can
be cited. Particularly interesting is the paper by Mitchell (1899) in which, following a displacement ap-
proach, a fourth-order field equation appears for the first time with two boundary conditions involving
second and third derivatives.
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Nomenclature
of cross-section domain, N-connected, with boundary 0.o/
o, projection of .7 on the x-axis

&%, & Euclidean plane, space

Int(&) simply connected domain enclosed within the curve ¥
¢; C 0./ ith regular curves of the boundary, i=1...N

¢, ¢;  bending constant, ¢ := v/(1 —v?)cy

H generalized potential stress function
E, G, v elastic constants
n:= [n, ng T components of the outward normal, n, at 0.o/

~

.= [-n; n,]" components of the tangent unit vector, ¢, at 0./
q:=1/qn; wn,)" components of the oblique unit vector at d.Z, q := (vny + n?)'/?

1] longitude of the current cross-section
0, €; stress and strain components in a cylindrical system of co-ordinate
V] potential stress function

A= p0d,(1/p)d, + 0., field operator, Eq. (5.6)

{0, p,z} system of co-ordinates in the plane of the cross-section

{0, p, ¢,z} cylindrical system of co-ordinates

{0,X,Y,Z} global system of co-ordinates (Z is the axis of revolution)
().  partial derivative with respect to the variable &

0  end of a proof

The beam with rectangular cross-section under plane state of stress has been studied recently by Chi-
anese and Erdlach (1988), and Kardomateas (1991). Furthermore, the relationships between the Timo-
shenko and Euler—Bernoulli formulations is recently presented by Lim et al. (1997) for the same cross-section.

Three-dimensional (3D) elastic problems were solved numerically for a trapezoid cross-section (Cook,
1989) and by means of ad hoc formulations for rectangular box beams (Cook, 1991; De Melo and Vaz,
1992). For a circular torus, an analytical solution was given in the fundamental paper by Sadowsky and
Sternberg (1953) in which a conjecture about the functional form of the displacement field was assumed,
following Mitchell: the governing boundary value problem (BVP) is a differential system of two second
order homogeneous partial differential equations (PDEs) in two unknown functions, coupled by two
boundary conditions involving second order partial derivatives.

Despite the importance of the problem, both for its intrinsic interest and the possibility of implementing
validation procedures in computational mechanics (general 3D beam theories, small deformation super-
imposed to large bending states, bending delamination, etc.), a complete and coherent formulation seems to
be lacking.

The aim of this paper is to solve exactly the 3D elastic problem assuming the stress tensor as an un-
known (function of only two variables in the plane of the cross-section): in a first step a potential function is
used to satisfy the equilibrium equations; then, some of the remaining significant compatibility equations
are reduced to a fourth-order elliptic PDE with variable coefficients. The equilibrium boundary conditions
(BCs) lead to a pair of equations in the second and third partial derivatives of the unknown function:
degenerate unstable BCs.

This kind of BVP, presented here for the first time, does not seems to be connected to the formulation
adopted, but is peculiar to the bending problem. The companion paper (Part II: Mentrasti, 2000), attacking
the problem with a displacement approach, leads to analogous conclusions.
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The degenerate unstable BVP is finally reduced to a simpler problem by an ad hoc integral represen-
tation of the unknown function, assuming the p-convexity of the cross-section domain. In the case of
rectangular cross-section the solvability of the problem is shown explicitly.

2. Equilibrium equation
2.1. The body

Let .o/ be the closure of a N-connected open set of the Euclidean plane &2, bounded by regular curves
¢ C 0o, i=1...N, where ¢ is the outermost boundary (Fig. 2); this domain is described in a local system
of co-ordinates {O, p,z}. The distance of ./ from the z-axis is strictly positive and it is of the same order of
magnitude of its diameter (large curvature beam).

The beam % C & is a toroid, i.e. a body generated by the revolution of its plane cross-section ./ about
the Z-axis of a global system of orthonormal co-ordinates {O, X, Y,Z}, withz = Z. % is devised as .o/ x 7,
where 7 := {p € Z|0< ¢ < @,} is the solid angle enclosing the beam, ¢ being the longitude of the current
cross-section measured from the X-axis as shown in Fig. 1.

This body is linearly elastic, homogeneous and isotropic; isotherm condition is assumed.

The mantle 0./ x 1" of the beam is not loaded, while on the base .2/, (/) a bending moment m;(—m;)
is applied. Body forces are nil.

2.2. Uniform bending
The beam is assumed to be subjected to a uniform bending, in the sense of the definition below.
The physical motivation of this hypothesis is to disregard the pointwise stress distribution on the bases

and to deal only with the resultant force of the applied stress (relaxed traction boundary condition).
The non-uniform case is also possible, but it is not considered in this paper.

=z
A

Fig. 1. Curved beam: global and local system of reference.
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Definition. A curved beam is in a uniform thermo-mechanical state if every local definable quantity (e.g.
stress, strain, constitutive law, entropy, temperature, etc.) is invariant under the group %, of rigid rotations
about Z.

From a mechanical point of view this functional conjecture means that the behaviour of the beam, at
each cross-section, is locally indiscernible from any other cross-section.

The analytical consequence of uniform bending is that the stress and strain tensors are independent of the
¢ co-ordinate (not so, of course, is the displacement field).

2.3. Bendinglshear—torsion uncoupling

The field equilibrium equations, in cylindrical co-ordinates, reduce therefore to the following system of
PDEs in the p and z variables only:

1 1

;(pol’),p + Tpez — ;O-(P =0, (21)

L,

p (p Tﬂ(/)),p + Tpzz = 0, (2.2)

1

;(prz),p +o0..=0. (2.3)
Stress BCs are

opn, + Tpn, =0, (2.4)

Toplp + Tp:htz = 0, (2.5)

Tty + 0.0, =0, (2.6)

where n is the outward normal at 0.«7.

This differential system can be split into two formally uncoupled subsystems because the t,, and ,.
components appear in Egs. (2.2) and (2.5) only.

When the constitutive equation is such that t,, and 7,. depend on y,, and y,. only the problem is
simplified (as it occurs for the isotropic body, explicitly discussed in the next sections).

In fact, in this case Egs. (2.2) and (2.5) govern the shear—torsion problem, as shown by Mentrasti (1996),
and 1,, and t,. will be therefore ignored in the sequel (bending/shear—torsion uncoupling hypothesis).

2.4. General solution of the equilibrium equations

The significant equations are satisfied in two steps: first, Eq. (2.3) is read as the (necessary) condition of
existence for a potential function (p,z), such that

: ==Y, 2.7
T.U- plpz ( )

1
! 2.8
c pl//ﬂp (2.8)
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Fig. 2. Cross-section in the p-z plane.

subject to the (sufficient) monodromy conditions
y{ dy =0, (2.9)

along each curve ¢; constituting the boundary 0.7 (Fig. 2).
Then, Eq. (2.1) is solved for ¢,(p,z) giving

oo =(p0,), + V. (2.10)
By using the tangent unit vector 7, f := [—n, n,]", the BC (2.6) can be written
1 1 1
O=—-(n, -y n)=—W. .+ t,) =y, 2.11
0 (‘// 14 w,p ) P (lp, lﬁ,p /’) ) lp,‘ ( )

that, after integration along 0.«7, gives
p(x)=y", Vxeaq. (2.12)

Observe that when these conditions are satisfied, the monodromy conditions (2.9) are automatically
fulfilled (if .7 is simply connected, the unique constant x//? can be set to zero, as will be widely discussed in
the sequel).

The remaining BC, Eq. (2.4), becomes

1
o,n, + ;lﬁ‘znz =0. (2.13)

In this way,  and o, are the natural unknowns of the problem.

3. Field compatibility equations

The above components of the stress tensor fulfill the field equilibrium equations identically. In addition,
they must verify the six compatibility conditions (A.1)—(A.6), shown in Appendix A.
In the present case Eqs. (A.4) and (A.5) are identically satisfied and the others become
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2 1
I .= —¢ ‘Zz+_gz_z__8z, :01 31
ot 2 = ey (3.1)
Il = 28/)21/,2 — Epzz T Ezpp = 07 (32)
1= —tg 4ty — 2y = 0 (3-3)
: opp T S T o J .
1
VI =&y — ;(Sl) - Sw)ﬁz =0. (34)

in which T (II, etc.) denotes the left-hand side of Eq. (3.1) (Eq. (3.2), etc.), regarded as a function of
Sij(p,Z).
3.1. Reduction of the significant equations

Eq. (3.1) can be arranged as
28pz,z —&p = Py (35)
and Eq. (3.2) as

(2822 = 2p) , = €p} (3.6)
then by substituting the former relationship in the latter, results in
(o), — &)] . = 0. (3.7)
On the other hand Eq. (3.4), T = 0, can be written as
[(pe,) , = €. = 0. (3-8)

Therefore, the following conclusion holds true:
Lemma 1. [f 1 =0 and VI = 0 then 11 = (pI) , + VI, = 0.

By collecting the partial derivatives with respect to p, 111 becomes

ur = _%[(pgqj)w — &, = —%[(psw)m —&), (3.9)

Egs. (3.8) and (3.9) finally lead to the required relationship
(pey) , — & = co. (3.10)

Lemma 2. Eq. (3.10) is equivalent to the system {IIl =0, VI = 0}.

The final result can be therefore stated:
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Theorem 1. The system of Egs. (3.5) and (3.10) is equivalent to the four significant compatibility equations
[=0,11=0,1=0, VI =0.

4. Governing equation

In order to obtain intelligible relationships in the unknown functions  and ¢,, the cumbersome alge-
braic manipulations necessary to substitute the strain expressions in system (3.5)—(3.10), must be carried out
with some order.

4.1. Integration of Eq. (3.10)
Let L denote the expression

1
L:=¢,, ,;(8[) —&p); 4.1

such that Eq. (3.10) can be rewritten, for the sake of brevity, as pL = cy.
Using the linearly elastic, homogeneous and isotropic constitutive equations and the results (2.7), (2.8)
and (2.10), L is written as

1 1
L=30,,+p0pp + lp,pzz + V(;W,p) +(1+ V);W,zz (4.2)

P

the Young modulus being included in ¢y. By isolating the terms derived with respect to p from those derived
with respect to z and rearranging the result, Eq. (3.10) finally becomes

1, 1 1
[;@ ap+vw>,ﬂ} 21 ), + ] = ot (4.3)

P

The solution of its associate homogeneous PDE is derived in Appendix B, together with a particular
solution o) (p), in the following form:

pzo-p + le =F_, (44)
1
(oY), + v = —p(;F,p) ; (4.5)
P
1 1
7, (p) 1= zc0(2Inp — 1) + 1 i (4.6)

where F(p,z) is a new unknown function, and ¢y, ¢, are (unessential) constants whose meaning is explained
in Appendix B.

Furthermore, Eq. (4.5) is reckoned as an ordinary differential equation (ODE) in which z appears as a
parameter; its solution is derived in Appendix C as:

¥ =1[1+v)¢—pd,1p"", (4.7)

p(liv)(j)ap:F:p- (48)
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4.2. Reduction of the differential system (4.7) and (4.8)

The aim of the last step is (i) to restate the solution of the previous system of PDE in terms of a single
unknown function that (ii) satisfies identically the compatibility equation (3.10).

In this scope, ¢ is tentatively devised as a linear combination of a new unknown function H and its
partial derivative H,, whose coefficients are polynomial in p. The attempt succeeded in a surprisingly ef-
ficient manner; in fact, posing

b= p'H, *2)

the left hand side of Eq. (4.8) becomes the derivative of an algebraic expression
p"¢ , =[(1—v)H + pH,] ,; consequently the solution of Eq. (4.8) is quickly obtained as

F=(1=VH + pH, + b(2), (4.10)

in which the undetermined function b(z) can be included in H.

5. Governing boundary value problem with degenerate unstable boundary conditions

The main result obtained in the previous paragraphs is the general solution of the compatibility equation
(3.10); after appropriate reductions, it can be summarized as follows:

1
=—p| —-H , 5.1
vim(; m)w (5.1)
gy =i (SHy) sl DH 4 pH L+, (52)
p\p "), P : g
a,(p) == 4co(2Inp — 1), (5.3)

where H(p,z) is the ultimate unknown generalized potential function.
The remaining condition to fulfill is the compatibility equation 7 = 0.
By expanding the strains as functions of H, through the above expression of y and ¢,, Eq. (3.1) writes

3 v
P(H pppp + 2H ppz + H zzo) — {2(}[## +H..)— ;Hp} - chp =0. (5.4)
v

5.1. Field equation

After an amount of algebraic handling, Eq. (5.4) can be rewritten as

1 1 1
- p<_Hp> +[_I,zz p<_1—],p> +sz
p p 0 p 0

this governing equation can be easily read in the following more expressive form

AAH =c;, Vx€ o (5.6)

1
+ —
p

v 1

N z

in which the operator A is defined as
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1
A= Ay A= 90, 0y + . (5.7)
and
v

Cz; = mCO. (58)

5.2. Boundary conditions
The BCs (2.12), y = ¥, using Eq. (5.1), leads to
1
p(pH,,) =), YX€E€Cod. (5.9)
P

The first BC is reduced, by substituting the results (5.1)—(5.3) in Eq. (2.13), to the following form

1 1 1/1
~H,.—(1—v —sz+v—<—]{,) +o°
[p 5P )p2 y p p I , P

1

ny, — <—H,,> n, = 0. (5.10)
p 0z

Using the previous BC in the third addend, after multiplying by p?, this equation becomes

1
[pH e — (1 = V)H..n, — p° <p3p> ne+ (0208 = vl )n, = 0. (5.11)

.z

To enlighten the structure of the BVP, this unstable condition can be modified in such a way that an
oblique derivative could appear.

By expanding the last derivative with respect to p and recognizing the terms (—H..n, + H ,.n.) as (—H,)
and (H,..n, — H,.n.) as (H,.),, respectively, Eq. (5.11) becomes

N

Vo = (H2), + p(H ), + (%% = 4 )n, = 0. (5.12)

i
Consider now the identity p(H ,.), = (pH ,.), — H ,:t,; then the previous equation can be rewritten as

(H:),

oz + (HZ)‘ZWII, + (psz - Hz),t + <p265 - Vlﬁ?)l’lﬂ =0. (513)
When a unit vector ¢, oblique with respect to the normal n at the boundary, is defined with components

1
qi=—[n. wn,)", q:=(’n + n?)'? (5.14)

then the alternative form of the second BC is finally obtained as

1
7(5)
p pz]

Since ¢ - n = (1 + v)n,n./q, the unit vector ¢ varies from n to —n (it turns counter wards with respect the
rotation of n along the boundary of the cross-section as shown in Fig. 3); thus Eq. (5.15) is an oblique
degenerate (unstable) BC.

q(H.), + + (pzag — lﬁo)np =0, VxegCoo. (5.15)

i
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q

5

2
7=

Fig. 3. Degenerate direction ¢, with respect to the normal n.

5.3. Discrete compatibility equations

When the cross-section ./ is a multi-connected domain, the field compatibility equations discussed in
Section 3 are no longer sufficient to determine the displacement field # univocally: the # jump along every
closed path % C ./ contouring the boundary curve ¢; must be zero, that is f du=0.

A complete analysis of the displacement field is carried out in Part II: Section 2 so that only the results
strictly necessary to evaluate d,u are summarized here:

1. The out of plane displacement v is completely determined by Eq. (2.41) Part II as v = byp¢ and there-
fore it does not induce any compatibility condition.
2. From the definition of ¢, := (v,, + u)/p, the continuous component u can be derived as

u = p(&, — bw), (5.16)

from the trivial continuity of ¢,[s;;(H)] and v.
3. Since y,, := w,, + u_, using the previous relationship and considering that v. = 0,w , can be obtained as

Wy = VﬂZ — Py (517)
4. Finally ¢, :== w,, or

W, = &,. (5.18)

Thus the required monodromy conditions involve no more than the w component; furthermore, by
employing the last results d,w can be written as a function of the strain components

dow = [(7,. — pey2)t, + &) dl; (5.19)

consequently, it is easy to write d,w as an explicit function of H(p,z) using relationships (2.7), (2.8) and
(2.10), the isotropic constitutive equation and Egs. (5.1)—(5.3):
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1
b+ ; —VH ..

1 v
+(1—v <—H) — coln
( )(p P ) ‘p>‘p T+ 0 P—

It is worth mentioning briefly that the necessary condition for this differential form to be independent of
the integration path is precisely the field equation AAH = ¢}, previously derived by fulfilling the general 3D
compatibility condition!

To render the expression enclosed in curly brackets decipherable, several algebraic manipulations are
required:

E 1 1
dw= v—2) —H —(1—v)—-H_.
W [( )<p ) 1-nghs|

~

_bdl. (5.20)

1. Extract from the first addend the term (v—1)(1/p)[p((1/p)H,,) .1, and associate it with

(1 =v)(1/p)(p((1/p)H ) ,) ,t- to obtain (1 —v)(1/p)[p((1/p)H,) ],
2. Proceed analogously with terms —(1 — v)(1/p)H ...t, and (1 —v)(1/p)H ,..t. to give (1 —v)(1/p)[H] .
3. Finally, consider the remaining first addend —((1/p)H ) .t, and the term —(1/p)H .. rising from step 2;
they can be collected in —((1/p)H ),

Accordingly, Eq. (5.20) can be rewritten as

E 1
dw=<(1—-v)-

1
/(57)
P\ "),

1 v 1
=(1- —(AH) , — ——=c¢pl dl— | -H dl. 5.21
(= { ), gamon, bt (Sa,.) (521)

1 1 v
1-v-[H.] — | -H,,] ———cl d/
=], = ()~ e,

Integrate this relationship along the closed path & C ./: on the left hand side ¢, d,w = 0 in view of the
required continuity of the displacement component; the last term on the right hand side, ¢,,((1/p)H,.) d/,
is trivially nil owing to the implicitly assumed regularity of the unknown function H; then the remaining
expression is

0= ?{ %(AH),n d/ — c(*)j{ Inpn,dl. (5.22)
v ,

The last line integral along . can be transformed in a surface integral. Let Int(.#) be the domain defined
as the subset of %* enclosed within the curve % (Fig. 4); note that Int(.?) is simply connected in any case
and n is its exterior normal. Hence

1
j{ Inpn,dl = / —da. (5.23)
&z Int(2) P

Writing down Eq. (5.22) for ¥ = ¢;, the final form of the discrete compatibility conditions (equivalent to
the w monodromy) are finally obtained

f{ l(AH)"ndl:—&-c(*) / La, (5.24)

1 1Y Int(e;) P

1 1
j{ f(AH)ndl:—c(*)/ —da, i=2,...,N, (5.25)
o P ’ Int(c;)
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Fig. 4. Definition of Int(¢;), delimited by the closed curve ;.

where the minus sign appears in Eq. (5.25) because in these relationships n is again the exterior normal with
respect to .o, instead of Int(¢).

Theorem 2. Only N — 1 discrete compatibility conditions are linearly independent.
Proof. The sum of Eq. (5.24) with Eq. (5.25) gives

/ l(/1H)'ndl :c(’;/ 1da, (5.26)
ot P s P

since .o is the complement of UY ,Int(¢;) with respect to Int(e;).
This equation is identically satisfied; in fact, by integrating the governing equation (5.6) multiplied by p
on the domain .7, results in

c 1cla = 1 (AH) ,| + l(AH)_’Z da = l(/1H)_ﬂdl. (5.27)
o P o | P [ ]ﬂ P z ot P

Thus Egs. (5.24) and (5.25) are linearly dependent.
Furthermore, the proof shows that any one of the N discrete compatibility conditions can be eliminated.
O

5.4. Equation in

Consider first that, from Eq. (5.1), function y can be expressed using the A, part of the operator A as

secondarily, it is easy to see that A and A, commute: AA, = A.A; finally, consider the following chain of
identities:

AH = A, H + A.H = — + A.H, (5.29)
AAH = =AY + AAH = — Ay + A, AH, (5.30)

A(ey) = A(AAH) = —AAY + A, AAH = —AAY + A.cp, (5.31)
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based on Egs. (5.28) and (5.6).
Thus the required equation in ¥ is

Ay = 0. (5.32)

Remarks. (1) The expansion (5.4) of the governing equation shows that it is an e/liptic PDE, with variable
coefficients, in the domain .o7.
(2) The boundary conditions are of a very special kind:

e No essential BCs are assigned;

o Eq. (5.9) is an oblique degenerate BC, along a constant direction (p-axis); it involves the second order de-
rivative of H (unstable BC);

e Eq. (5.15), or (5.11), is an oblique degenerate BC involving up to the third order partial derivative of H
(unstable BC).

From the point of view of functional analysis, a general discussion of the solution existence for a so
difficult BVP is not yet available. On the contrary, the degenerate oblique derivative problem for second
order systems is well studied even in non linear cases (see the masterly Chapter 19 in Mikhlin (1970) in
which analytical functions are employed). Alternatively, the second order BVP can be restated as a singular
integral equation (Yanushauskas, 1989) or studied within the scope of the pseudo-differential operators
theory (Popivanov and Pagachev, 1997).

(3) In this regard, it is useful to anticipate here the conclusion of Section 6 in Part II: the differential
system governing the bending of a curved beam is non-variational, in the sense that the field equation and
the BCs cannot be derived from any (quadratic) functional of H.

(4) On the other hand, the BVP in the yy unknown seems to be more tractable. In fact the field equation
AAY =0, with the condition = lp? on 0.9/, is almost a standard problem. Unfortunately, the second
boundary condition (2.13), or (5.11), resists reformulation in terms of ¥ alone (the question will be resolved
with the transformation presented in Section 7).

6. Force resultants

In this paragraph the components of the force resultants, N,, V,, V., M,, M., M,, are computed to
ascertain that the beam is subjected to a bending moment about z (in Part II analogous results are obtained
without using the explicit solution of the equilibrium equation).

It is interesting to anticipate that both the centroid (in any sense it could be defined in a purely geometric
manner) and a neutral “axis” do not appear in the results obtained.

6.1. Normal force

The resultant of the ¢, stress components, acting on the current cross-section .27, in the direction of its
normal is:

1
N, := / o,da = / [(pap).p + lp,zz] da = / P |:O-/1nﬂ +_lpzn2:| d/ =0, (6.1)
o o ' o/ P

in which the evaluation (2.10) and the BC (2.13) are used.



5716 L. Mentrasti | International Journal of Solids and Structures 38 (2001) 5703-5726

The shear forces, ¥, and 7, and the moment component M, vanish identically because 7,, and 7, are
assumed to be zero.

6.2. Moment component along the p-axis

The moment of the normal stresses with respect to the p-axis, on each cross-section .o/ ,, is:

M, ::Lzawda:LZ[(PGp),er(l//,zz)]da:/[(pmp),pﬂzm)—lﬁ,z]da

— /M zp {a,,np + % l//ﬁzl’lz] dl + Z {lﬁ[ / n, dj] =0, (6.2)

where the last equality is obtained using the considerations leading N, = 0 and the BCs (2.12).

6.3. Bending moment

In conclusion, the moment of the normal stresses with respect to the z-axis, on each cross-section .7, is
the only force component different from zero; two alternative expressions are provided in the following:

M. = / P9 da = / , pl(pay) , + b ]da = / [(p*0,), + (p¥.). — po,]da

' o

1
= / 0’ {apnp +—l//42n2:| dl — / po,da = —/ po,da, (6.3)
ot p oS o

in which the BC (2.13) is used in the integral along 0.¢/.

The last expression shows that great influence of the stress component ¢, in exact formulations: it gives
M. formally in the same way as a,,.

This relationship permits determining the constant ¢, that appears on the right hand of the field
equation.

7. The degenerate oblique (unstable) derivative fourth order BVP in a p-convex domain

This paragraph presents the solution of the BVP governing the bending of a curved beam. The main
outcome is Lemma 5 in which an appropriate integral representation of the H function is introduced to
transform one degenerate unstable condition into an essential BC. An elementary solution for a second order
degenerate BVP in a circle can be found at the end of Chapter V, Section 4, in Bitsadze (1968).

7.1. Incomplete degenerate boundary value problem

Consider first the following incomplete degenerate BVP

AAH(x) =0, Vxe€ ., (7.1)
p(%]—[p(x)) =g(x), Vxedd. (7.2)

Notice that this BVP has a very special structure:

1. the field equation is homogeneous;
2. only one BC is assigned (incomplete BVP), g(x) being a regular function defined on the boundary;
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"""" N\

Fig. 5. p-convex cross-section domain with a regular interior curve.

3. the BC involves the second order derivative (unstable BC);
4. the derivative is prescribed in a constant direction that is not normal to the boundary (oblique BC); in
addition, this direction becomes tangent to the boundary at several points (degenerate oblique BC).

7.2. Domain hypotheses

A transformation of this BVP is derived in the following hypotheses on the cross-section domain:

Domain hypothesis 1 (DH1). .o/ is p-convex; i.e. every segment parallel to the p-axis lies within .o/ provided
that its extreme points belong to .o7; furthermore, no finite segment parallel to the p-axis belongs to the
boundary.

Domain hypothesis 2 (DH2). There is sufficiently regular curve / contained in o7, ¢ := {(p,z) € o/ |p =
0o(2),z € .}, where .o, is the projection of .«/ on the z-axis (see Fig. 5).

From DHI1 it follows that .o7 is simply connected; moreover, every line parallel to the p-axis intersects the
boundary 0./ exactly at two points (with abscissa p,;,(z) and p,..(z), respectively) such that

pmin(z) < /ﬁO(Z) < pmax(z)'

7.3. Preliminary results

Lemma 3. The operator A, := pd,(1/p)d, admits an explicit inverse, in the following sense:

L [rp=& _ 1p* = pg
3 | Aw@de = ute) — [uta) 5 )| (1)

Proof. Consider the ODE A,u(p) = v(p); by a quadrature
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J/ dé—+ 1(Po) (7.4)

is obtalned, an integration by parts of the first term on the right hand side of this relationship gives

p '11 _12 1 p_ pl _l pp2_§2
/ {17/ Cw(«:)dé:}oln— [217 B <é)déL | amman=3 [ Fpwgas )

so that the final form of the solution can be written as

2 2

1 p?— L [rp=&
u(p) = u(po) + 2 P (0) + / P =S ), (7.6)
Po Po

from which the lemma can be obtained. O

Lemma 4. Let v(p,z) satisfy the PDE AAv =0 in a p-convex domain. Then

1 4 p2 _ 62
E /};l Tl)ﬁzzzz(paz) dé = —Ap(/lp + 2Az)0(p,Z) + (Ap —+ 2Az)0(p(),z)

1 p* = pj

2

0,(A4, +24,)v(py,z), in . (7.7)

Proof. Since A and A. commute, from definitions (5.7) the identity AA = A,A4, +24,4. + A. A, =
A,(A, +24.) + 4.4, holds; therefore if A4y =0 then A,A4,v=—A,(A4, +2A4,)v. Using this result, the
integral on the left-hand side of Eq. (7.7) can be written as

1 2= 1 [ p=&
/ E i = —5 [ BT 4,0+ 24000, dc
2 Po f 2 Po

¢
1p*—¢&

(7.8)
in which the second equality is obtained by applying Lemma 3. [

Lemma 5. Let </ satisfy the hypotheses DH1 and 2. Then a necessary and sufficient condition for the function
H(x) to be the solution of the incomplete degenerate BVP (7.1) and (7.2) is that the following integral rep-
resentation holds

1 ! pz B éz 2
Hp2) =g [ P R)a s o)+ o sl (79)
Po(z
where v(p, z) satisfies the following incomplete BVP:
AAv(x) =0, Vx € o, (7.10)
v(x) =g(x), Vxedd, (7.11)

and functions o _4(z) := Z?:o o;(z) and P 4(z) := Z? o %(z) are solutions of the following ODEs on the
manifold .o7.:

d™! 1 1o .
m%(z) 3 [Po(z)],zm @D[,D,Z}p:;)(z) =0, i=0...3 (7.12)
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d* 1
pé@m(z) = _Epoaﬂ(/lﬂ + 2/12)0[[)72]/,:;,;(2)7 (713)
di+1 1 ~ _ aj )
Wﬂ[(Z) +E[p()(z)]ﬁzp()(z)70[1)72]1):%(2) = 0, 1= 03, (714)
da* 1
@ﬁ‘,(z) = —(4, +24:)v(py, 2) + Epoap(/lp + 2/12)0[/9»2},):,3(,(2)- (7.15)
Proof. (Sufficiency). From Lemma 3 and the definition of H (7.9), the following identities hold
AH =, (7.16)
A, A.H = A,v. (7.17)
The partial derivatives of H with respect to z must be computed step by step as shown below:
1 p p2 _ 52 1. p2 _ [) ~ ~
s [ (6248 Lo P L a2 @) o) (118)
o(2) ¢ Po(2)

To simplify the subsequent development, the (undetermined) functions oy and f, are used to eliminate
the second addendum of this equation, i.e. they are constrained to identically satisfy the following ODEs on
%Z:

0.(2) = 3 (e 50l = O (7.19)
1
Br2(2) + 3 [00(2)] Po(2)vPo (), 2] = 0. (7.20)
Consequently H,. reduces to
1 p 2 _ g2
HZZLMP (6 o) By (7.21)

that maintains the same formal structure H possesses in Eq. (7.9). By reiterating the process, it is easy to
realize that A,4.H can be written as

1 [r p2=&
@M#E/ Lfﬂﬂwwﬁ+mmnwma (7.22)
Po(2)
assuming that the «; and f; functions satisfy the ODEs
d! 1 1o ,
Woci(z) - E[pO(Z)]’Zm @v[p,z]p:;o@ =0, i=0,...,3, (7.23)
di+1 1. _ o .
B 45 [P BoE) vl 5 =00 T=0,3, (7.24)

It is worthy of mention that the initial values of these functions are quite unessential and could therefore
be ignored.
Assuming that function v obeys the hypothesis of Lemma 5, A4v = 0, Eq. (7.22) becomes
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1 ,02 _ p2
A AH = —A,(A, +24,)0(p,z) + (4, + 2/12)”[/072];):,30(2) + 3 o 00,(A4, + 2/12)1)[p,z]p:ﬁo(z)
d* d*
() 3 i), (7.25)
According to the previous adopted strategy this relationship can be simplified in
A AH = —4,(A, +24.)v(p, z) (7.26)
provided that the function o4 and f4 fulfill the ODE on .«7:
, d* 1

g a(2) = — 30, (A, + 240(py,2), (7.27)
d* 1
a5t Pa@) = = (A, +24:)0(pg, 2) + 5 pe0y (A, +24:)0(py, 2)- (7.28)

In conclusion, by collecting the results (7.26), (7.16) and (7.17), the desired equation AAH = 0 is verified.
(Necessity): Let H(x) be a solution of BVP (7.1) and (7.2) and v be defined as

v:=A,H, (7.29)

obviously, relationship (7.9) is merely its general integral (accompanied by the relevant consistency initial
value conditions).
From the identity AAA = AAA, + A,AA, already used in proving (5.32), Eq. (7.10) is restored

0= AAAH = AAv + A AAH = AAv. (7.30)

Finally, BC (7.11) is a trivial consequence of the v definition and Eq. (7.2). O

7.3.1. Identification of v as the \y potential function
A review of the proof of Lemma 5 shows that (—v) can be identified with the potential stress function
defined by Eq. (5.1) and governed by the field equation (5.32), with xp? on 0.o/.

7.4. Solution of the degenerate boundary value problem governing curved beams in bending
Owing to the very special form of the degenerate oblique BC appearing in the BVP (5.6), (5.9)—(5.11) in
the H function, the question of existence of its solution is reduced to a non-oblique BVP in the potential

function .

Theorem 3. The degenerate oblique unstable BVP governing the uniform bending of curved beams,

AAH =c¢), Vxe€ ., (7.31)
1
pl —H,] =0, Vxedd, (7.32)
P »
1
{(v —DH.. + pH,.. + paﬂ ny, — p(pHp> n,=0, Vxe€od, (7.33)
pz

has the following solution
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1 *_4 1 g p2 B 52 2

H(p,z) =5c2 =5 / ——— V(& 2)dE + pap.a(2) + Bo..4(2), (7.34)
2 2o €

in which \ satisfies the following BVP
AAY(x) =0, Vx € .o, (7.35)
Y(x) =0, Vxe€o, (7.36)
1
(pH[x//]J)ZZ +(v—1DH[Y] , + pai)nﬂ - p<;H[lﬁ]’p> n.=0, Vxe€od, (7.37)
0z

and a,(z), p;(z) are solution of ODEs (7.12)—~(7.15), in which v must be replaced by (—).

Please note that the last BC is actually a boundary integro-differential equation in .

8. A model case: the rectangular cross-section

The possibility of finding a solution for the degenerate unstable BVP derived above still remains open, at
least in the p-convex domain. To this end, in this last paragraph a particularly simple cross-section is
examined, as a model case: the minimal algebra involved permits showing that the problem can be reduced
to an (almost) standard BVP, a solution for which can be found, e.g. by a finite difference technique.

8.1. Rectangular cross-section

Despite the fact that the hypothesis of p-convex cross-sections does not permit a boundary parallel to the
p-axis, when these segments appear only at the extreme ordinates of the cross-section, the analytical
problems can be bypassed by ad hoc considerations.

Consider a rectangular cross-section whose sides parallel to the z-axis are located at p, and p, > p,,
respectively, while the others have ordinate +z,. The curve 7, introduced above, is suitably chosen coin-
ciding with the side at minimal abscissa: p,(z) = p,

Whenever p,(z) = constant occurs, the relationships presented in Theorem 3 are greatly simplified be-
cause %..4(z) = 04(2), fy_4(2) = B4(z) and Eqs. (7.12)~(7.14) disappear; thus

1 1 [P pr— &
H(p,z)250324_§/ : gé Y(&,2)dE + pPou(2) + Pal2). (8.1)

The first BC (Eq. (7.36)) simply states ¥y = 0 on 0.¢7.
8.1.1. Third boundary condition: horizontal sides

When n, =0, Eq. (7.37) reduces to the only term p((1/p)H,, ),,- = O that, owing to the fundamental
result (7.16), A,H = —, can be written as

V=0, {X € [p07p1]7z = iZO}' (82)

8.1.2. Consistency conditions
Since i =0 on the boundary, A.}(p,z) =0 on the vertical sides (but 0,4./(p,z) # 0, of course).
Consequently the consistency conditions (7.13) and (7.15) at p = p, can be slightly simplified as

pacty (2) = +3pe0, (A, + 240 (py, 2), (8.3)
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itV(Z) = J'_A/le(p()az) - %poap(/lp + 2/12)!#(,00,2)7 (84)

in which the derivatives of a4(z) and f,(z) are denoted through apexes, e.g. d*/dz* = ( )", without am-
biguity.

From these equations it is immediate to derive the following relationship (always true when the curve 7 is
the straight line p = p,):

PR (2) + B (2) = A, (py, ). (8.5)

8.1.3. Third boundary condition: side p = p,

In order to simplify the expressions, the particular solution a}; has been chosen in such a way that
ar(py) = 0 and o) (p,) = 0, as explained in Appendix B.

On the vertical sides n, = 0, so that Eq. (7.37) reduces to

pH . + (v — 1)H .. +pa, =0 (8.6)
Since
"p
H,=— Exp(f,z)df + 2pau(2), (8.7)
Po
the BC (8.6), at p = p,, simply gives
(1 4+2)p3, — (1= V) = 11 = V)i, (8)

The consistency conditions (8.3) and (8.4) can be employed to remove the unknown function from this
equation (after a double derivative):

P00y (A +24:)1(po, 2) — (1 = v) A, (pg, 2) = (1 = v)ey- (8.9)

The explicit expressions of oY and [ﬁv will be useful in the sequel: from the double derivative of Eq. (8.8)
and the consistency condition (8.5)

pody = %(1 = v)eg + A,9(po, 2)]; (8.10)
Xi=—%+(1—V) [‘33_%4»‘?(,00»2)] (8.11)

can be obtained.

8.1.4. Third boundary condition: side p = p,
The condition (8.6) evaluated at p = p,, after rearranging the terms under integral, becomes

1/" (L+w)pi+(1-n&
Po

Ve (8,2 — (1 +v>péaz<z>(% ) 0, (8.12)

2 28 2

This (integro-differential) equation is quite cumbersome to handle; therefore, according to what was
carried out for the previous case, the elimination of o} (z) would give a BC involving only .
After a double derivative with respect to z, this equation becomes

P1 2 — 2
_% / (1 + V)plzz(l V)é Ap(Ap + 2/12)!10(572)(15 _ ,112[08 + Apl//(po’z)] =0 (813)
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in which AAy =0 is used to write ¥
o 1= 11— )3/ — 1).

Carrying out transformations similar to that used in the proof of Lemma 4, this relationship is converted
into a two-point boundary condition. For this purpose, the following result is required.

as — A,(4, +2A.)y and Eq. (8.10) to remove of; finally

s222Z

Lemma 6.
/{: (1+ v)p12+p(1 =2 A,0(0)dp = proy(oy) —% (1+ V)Z—é+ L= v|pov,(py) = (1 =)
x [v(p) = v(po)]- (8.14)

Proof. Since it is similar to that of Lemma 3 it is omitted. [

In conclusion, applying this result with v(p) := (4, + 24.)y to Eq. (8.13), the anticipated form of the BC
at p = p, is obtained as

—p10,(A, + 24 ) (py,2) + (1 = v) A0 (p1,2) + [(1 = v) (g — 1) — o] A, (po, 2)
= [y = (1 = v)meg, (8.15)

where p; :=1[(14v)(pi/p5) + 1 —V].

This is a two-point boundary condition involving up to the third derivative of .

In the case of a trapezoidal cross-section (p; is a function of z) the last boundary condition remains in the
form of an integro—differential equation.

9. Conclusion

In this first paper, a coherent theory of the bending problem in a circular curved beam, having a large
radius of curvature with respect to its width, is presented.

The cross-section is multi-connected.

The 3D (linearly isotropic and homogeneous) elastic problem is solved assuming the stress tensor as the
unknown and by exactly satisfying the field compatibility equations.

The governing BVP is a fourth-order elliptic (variable coefficients) differential system with two degenerate
unstable BC.

When the cross-section domain is assumed to be p-convex, the problem is reduced to a simpler form. An
explicit formulation is derived for the rectangular cross-section with sides parallel to the axes.

The closing remarks, on all the issues arising regarding the bending of a curved beam, are delayed at the
end of Part II in order to achieve a global vision of the problem and outline possible enhancements.

Appendix A. Compatibility equations

The following compatibility equations in cylindrical co-ordinates are derived from Reismann and Pawlik
(1980).
2 1

—&pzpz T 58 — & .zz+_8 zz &z :Oa (Al)
ptpw [)2 0P 0, pp, P P

28pz,pz — Epzz — Ezpp = 07 (A2)
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%817(/?4’«3 ~ Eppp %SP&N’ + %89,/) + %Sww - %8«24) =0, (A3)
%SZW - :%spz,[p + €pzp — 8,,,/,4 . + ;azw - ?sz‘q, =0, (A.4)
%gp«wz - :gm«z + ;gpz,f/) - F'fﬂz,ﬂ] , - %F'ﬂfﬂz + égw,ﬂ - ;Sﬂp =0, (A.5)
Eppz — % :8<pz,p + &ppz — ;spz,w] , - %sw@ - % (8 — &), =0. (A.6)

It is worth noticing that the explicit use of these equations is very rare in actual applications; furthermore
a number of mistakes are present in several handbooks (Malvern, 1969; Zyczkowski, 1981).

Appendix B. General integral of Eq. (4.3)

The PDE (4.3) is of the form
<1A4p> +1B4zz = COla (Bl)
e ), P p
where 4 := (1/p)(p*a, +w) , and B := (py) , + v

B.1. Solution of the homogeneous PDE

Eq. (B.1) is a condition for the existence of a function F!(p, z) (assumed to be monodrome in domain .o7)
such that

1 1
—4,,=—F, (B.2)
p p
1 1
~B,=—-F. B3
p pr (B.3)
In the same way, Eq. (B.2) gives
A= F?, (B.4)
1 _ 2
F =F,. (B.5)
while Eq. (B.3), written using the last result as B. = —(F) , gives
1 1
-B= (—F3) , (B.6)
p p 0
1 1
—F.=——F.. (B.7)
p p

Finally from the former equation
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3
FP=-F, (B.9)
is obtained. Thus, by substituting these results in Egs. (B.4) and (B.6) the solution can be written as
A=(F).. (B.10)
|-
B=—p|-F,| . (B.11)
)

B.2. Particular solution

A particular solution of Eq. (4.3) is easily determined by ignoring * and regarding a/‘j as a function of p
only (the PDE becomes an ODE):

1 1
ar(p) ::Zc0(2lnp— 1) + ¢ +62;. (B.12)

The constants ¢; and ¢, are arbitrary, of course, and therefore can be assumed to be nil.

It is however interesting to note that they can be employed to assign arbitrary values to o, at distances py
and p;. This is what occurs in the well-known Golovin solution of bending in circular beams with rect-
angular thin cross-section in plane state of stress, where ¢, = 0 at the inner and outer surfaces:

1 pilnp, — p?Inp
e =-co 1 —280—0 I B.13
‘T4 0( Py — P (B.13)
1 2.2
e = 2oL _1q 20 (B.14)

= 0
27 p5—p1 P

Appendix C. General integral of Eq. (4.5)

Eq. (4.5), rewritten as,

b+ (14) 0 = —(%F) 1)

can be regarded as an ODE in p, in which z is reckoned as a parameter. The solution of its associate ho-
mogeneous equation is quite immediate:
Yo = ap 1+, (C2)

a being a constant.
A particular solution is found by the Lagrange method in the form y* = a(p)p~1*". The relevant gov-
erning ODE is

1
y = _p<1+v><_pp) . (C.3)
p »

A first integration by parts gives
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2= —pFy 4 (140) [ oI (C4)

With the position,
(1{)7;) = P(WDF‘/) (CS)

in which ¢(p,z) is a new unknown function, Eq. (C.4) can be quickly integrated; after some algebra Yt
becomes

v =plp" 9], (C.6)

Gathering together all these results, the required solution is finally

Y =la—pb, + (1= v)glp ), )

Fy=p1g,, (C38)

As a concluding remark it can be noted that the constant a can be included in ¢ and therefore it is not
reported in Eq. (4.7)
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